Orthogonal photoswitching in a multifunctional molecular system
نویسندگان
چکیده
منابع مشابه
Orthogonal photoswitching in a multifunctional molecular system
The wavelength-selective, reversible photocontrol over various molecular processes in parallel remains an unsolved challenge. Overlapping ultraviolet-visible spectra of frequently employed photoswitches have prevented the development of orthogonally responsive systems, analogous to those that rely on wavelength-selective cleavage of photo-removable protecting groups. Here we report the orthogon...
متن کاملMolecular scale conductance photoswitching in engineered bacteriorhodopsin.
Bacteriorhodopsin (BR) is a robust light-driven proton pump embedded in the purple membrane of the extremophilic archae Halobacterium salinarium . Its photoactivity remains in the dry state, making BR of significant interest for nanotechnological use. Here, in a novel configuration, BR was depleted from most of its endogenous lipids and covalently and asymmetrically anchored onto a gold electro...
متن کاملPhotoswitching a molecular catalyst to regulate CO2 hydrogenation.
Inspired by nature's ability to regulate catalysis using physiological stimuli, azobenzene was incorporated into Rh(bis)diphosphine CO2 hydrogenation catalysts to photoinitiate structural changes to modulate the resulting catalytic activity. The rhodium bound diphosphine ligands (P(Ph2)-CH2-N(R)-CH2-P(Ph2)) contain the terminal amine of a non-natural amino acid, with the R-group being either β-...
متن کاملMolecular architecture of a multifunctional MCM complex
DNA replication is strictly regulated through a sequence of steps that involve many macromolecular protein complexes. One of them is the replicative helicase, which is required for initiation and elongation phases. A MCM helicase found as a prophage in the genome of Bacillus cereus is fused with a primase domain constituting an integrative arrangement of two essential activities for replication...
متن کاملRNA Polymerase I: A Multifunctional Molecular Machine
In this issue, Kuhn et al. (2007) report the complete structure of the 14-subunit yeast RNA polymerase (Pol) I enzyme at 12 A resolution using cryo-electron microscopy (cryo-EM). Their study reveals that three subunits of Pol I perform functions in transcription elongation that are outsourced to the transcription factors TFIIF and TFIIS in the analogous Pol II transcription system.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Nature Communications
سال: 2016
ISSN: 2041-1723
DOI: 10.1038/ncomms12054